Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass

نویسندگان

  • Chenlin Li
  • Deepti Tanjore
  • Wei He
  • Jessica Wong
  • James L Gardner
  • Kenneth L Sale
  • Blake A Simmons
  • Seema Singh
چکیده

BACKGROUND Ionic liquid (IL) pretreatment is receiving significant attention as a potential process that enables fractionation of lignocellulosic biomass and produces high yields of fermentable sugars suitable for the production of renewable fuels. However, successful optimization and scale up of IL pretreatment involves challenges, such as high solids loading, biomass handling and transfer, washing of pretreated solids and formation of inhibitors, which are not addressed during the development stages at the small scale in a laboratory environment. As a first in the research community, the Joint BioEnergy Institute, in collaboration with the Advanced Biofuels Process Demonstration Unit, a Department of Energy funded facility that supports academic and industrial entities in scaling their novel biofuels enabling technologies, have performed benchmark studies to identify key challenges associated with IL pretreatment using 1-ethyl-3-methylimidazolium acetate and subsequent enzymatic saccharification beyond bench scale. RESULTS Using switchgrass as the model feedstock, we have successfully executed 600-fold, relative to the bench scale (6 L vs 0.01 L), scale-up of IL pretreatment at 15% (w/w) biomass loading. Results show that IL pretreatment at 15% biomass generates a product containing 87.5% of glucan, 42.6% of xylan and only 22.8% of lignin relative to the starting material. The pretreated biomass is efficiently converted into monosaccharides during subsequent enzymatic hydrolysis at 10% loading over a 150-fold scale of operations (1.5 L vs 0.01 L) with 99.8% fermentable sugar conversion. The yield of glucose and xylose in the liquid streams were 94.8% and 62.2%, respectively, and the hydrolysate generated contains high titers of fermentable sugars (62.1 g/L of glucose and 5.4 g/L cellobiose). The overall glucan and xylan balance from pretreatment and saccharification were 95.0% and 77.1%, respectively. Enzymatic inhibition by [C2mim][OAc] at high solids loadings requires further process optimization to obtain higher yields of fermentable sugars. CONCLUSION Results from this initial scale up evaluation indicate that the IL-based conversion technology can be effectively scaled to larger operations and the current study establishes the first scaling parameters for this conversion pathway but several issues must be addressed before a commercially viable technology can be realized, most notably reduction in water consumption and efficient IL recycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification.

The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatment (dissolution and precipitation of cellulose by anti-solvent) switchgrass exhibited reduced cell...

متن کامل

Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids.

Ionic liquids (ILs) have emerged as attractive solvents for lignocellulosic biomass pretreatment in the production of biofuels and chemical feedstocks. However, the high cost of ILs is a key deterrent to their practical application. Here, we show that acetate based ILs are effective in dramatically reducing the recalcitrance of corn stover toward enzymatic polysaccharide hydrolysis even at load...

متن کامل

Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment.

The ionoSolv pretreatment is a new technique employing protic low-cost ionic liquids and has previously been applied to successfully fractionate switchgrass and the grass Miscanthus giganteus. This study investigates the effect of using the protic ionic liquid solution [N2220][HSO4]80% with two different acid/base ratios (1.02 and 0.98) at 120, 150 and 170 °C on the pretreatment outcome of the ...

متن کامل

Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis.

Cellulose is inherently resistant to breakdown, and the native crystalline structure (cellulose I) of cellulose is considered to be one of the major factors limiting its potential in terms of cost-competitive lignocellulosic biofuel production. Here we report the impact of ionic liquid pretreatment on the cellulose crystalline structure in different feedstocks, including microcrystalline cellul...

متن کامل

Microwave Pretreatment of Switchgrass to Enhance Enzymatic Hydrolysis

Switchgrass is a promising lignocellulosic biomass for fuel-ethanol production. However, pretreatment of lignocellulosic materials is necessary to improve its susceptibility to enzymatic hydrolysis. The objectives of this study were to examine the feasibility of microwave pretreatment to enhance enzymatic hydrolysis of switchgrass and to determine the optimal pretreatment conditions. Switchgras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013